Computer Science Department

TECHNICAL REPORT

"Decision Procedures for Elementary Sublanguages of Set Theory.
VII. Validity in Set Theory When a Choice

Operator is Present"
by
A. Ferro
and
E. G. Omodeo

Technical Report \#226
June, 1986

> NEW YORK UNIVERSITY C,OURANT INSTITUTE-LIBRARY

NEW YORK UNIVERSITY

Department of Computer Science Courant Institute of Mathematical Sciences 251 MERCER STREET, NEW YORK, N.Y. 10012

＂Decision Procedures for Elementary Sublanguages of Set Theory．
VII．Validity in Set Theory When a Choice Operator is Present＂ by
A．Ferro and
E．G．Omodeo
Technical Report \＃226 June， 1986

$$
\begin{aligned}
& \because 1 \text { ••• } 2 \\
& \text { e. It: } 2 \text {. }
\end{aligned}
$$

Decision Procedures for Elementary Sublanguages of Set Theory.

VII. Valldity in Set Theory When a Choice Operator is Present by
A. Ferro

University of Catania and Courant Institute and
E.G. Omodeo

Enidata - Bologna

1. Introduction

In a language designed to formalize set theory, it is useful to incorporate a primitive unary operator η about which one postulates that $\eta s \in s$ and $\eta s \bigcap s=\phi$ for every nonempty set s. The existence of such an η implies the validity of both the foundation (or regularity) axiom and the axiom of choice (see [8], [9], [10]). Moreover, in automatic theorem proving the introduction of such an operator seems to be the most natural way of formalizing induction proofs in mathematics (cf. [11]).

In this paper we consider an unquantified theory whose only relators and operators are $=$ (equality), \in (membership), \bigcup (binary union), \backslash (set difference), η; in addition to these symbols, our language involves the usual propositional connectives and denumerably many variables, which are supposed to range over finite sets. (Apart from the restriction of considering only finite sets this is an extension of the theory MLS considered in [1]). We show that if we impose some further semantical constraints on η, then for every formula p of our language either p is valid, i.e. true under all possible assignments of finite sets to the terms, or some of these assignments makes p false, independently of the particular choice of η. We achieve this by giving an algorithm which either detects the validity of p or builds a counterexample of p (independent of p) when p is invalid.

We consider also the language in which the symbols $\cup, \$ are not allowed (cf. [2]) but in which variables are supposed to range over arbitrary sets. A similar completeness theorem

$$
\begin{aligned}
& \text { is } \because \text { のn・スer vy }
\end{aligned}
$$

is proven under weaker assumptions on η by giving alternative decision method applicable only to formulae of this sublanguage.

2. Semantics of the Choice Operator η

If we simply required that $\eta s \in s$ and $\eta s \bigcap s=\phi$ for every nonempty set s, and assigned some default value to $\eta \phi$, then the usual relationship between validity and satisfiability can not be made independent of the particular choice of the function η. For example the formula

$$
\begin{equation*}
\eta x \in y \& \eta y \in x \rightarrow \eta x=\eta y \tag{2.1}
\end{equation*}
$$

neither is valid, i.e. true under all possible assignments of (finite) sets to variables, nor its negation has a model independent of η. The same holds for the formulas

$$
\begin{align*}
& v \in w \& w \in \eta x \rightarrow \nu \& x \tag{2.2}\\
& \nu \subseteq \eta x \& v \neq \eta x \rightarrow \nu \& x \tag{2.3}
\end{align*}
$$

To avoid this kind of problem we will put more semantical constraints on η. More precisely we assume that for some well ordering $<$ of all sets the following restrictions are satisfied:
$R_{0} \quad \eta \phi=\phi(e m p t y$ restriction $)$
$R_{1} \quad x \neq \phi \rightarrow \eta x \in x$ (choice restriction)
$R_{2} \quad y \in x \rightarrow \eta x \leq y$ (minimality restriction)
$R_{3} \quad y \in x \rightarrow y<x$ (regularity restriction)
$R_{4} \quad\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \not \subset x \rightarrow\left\{x_{1}, x_{2}, \cdots x_{n}\right\}<x \quad$ (finite monotonicity restriction)
$R_{5} x_{1}, \ldots, x_{n}<y_{0}<y_{1}, \ldots, y_{m} \rightarrow\left\{x_{1}, \cdots, x_{n}, y_{1}, \ldots, y_{m}\right\}<\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$ (antilexicographic restriction)

From R_{5} it follows immediately the following

LEMMA 2.1. If A, B are finite sets then either
(i) $A \subseteq B$ and $A \leq B$, or
(ii) $B \subseteq A$ and $B \leq A$, or
(iii) $A<B$ if and only if $\max (A \backslash B)<\max (B \backslash A)$.

An immediate consequence is the following
R_{6}. If x, y, z are finite sets then

$$
x<y \&(x \bigcup y) \cap z=\phi \rightarrow(x \bigcup z)<(y \bigcup z)
$$

Moreover the following is also true.
R_{7} Let $A_{1}<A_{2}<\cdots<A_{n}$ be nonempty finite sets which are pairwise disjoint then

$$
A_{i_{1}} \cup A_{i_{2}} \cup \cdots \bigcup A_{i_{k}}<A_{j_{1}} \cup A_{j_{2}} \cup \cdots \bigcup A_{j_{m}}
$$

if and only if

$$
\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}<\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}
$$

in the antilexicographic ordering.

Indeed assume that $i_{1}<i_{2}<\ldots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{m}$. Clearly

$$
\begin{equation*}
\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \leftrightarrow A_{i_{1}} \bigcup A_{i_{2}} \cup \cdots \bigcup A_{i_{k}} \subseteq A_{j_{1}} \cup A_{j_{2}} \cup \cdots \bigcup A_{j_{m}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \subseteq\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \leftrightarrow A_{j_{1}} \bigcup A_{j_{2}} \cup \cdots \bigcup A_{j_{m}} \subseteq A_{i_{1}} \bigcup A_{i_{2}} \cup \cdots \bigcup A_{i_{k}} \tag{2.5}
\end{equation*}
$$

Therefore if one of (2.4) and (2.5) holds then R_{7} is plain. Otherwise put $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$, $J=\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$. By R_{6} and by Lemma 2.1 we get

$$
\begin{aligned}
& \bigcup_{i \in I} A_{i}<\bigcup_{j \in J} A_{j} \leftrightarrow \bigcup_{i \in N} A_{i}<\bigcup_{j \in N} A_{j} \\
& \leftrightarrow \max \left(\bigcup_{i \in N} A_{i}\right)<\max \left(\bigcup_{j \in N} A_{j}\right)
\end{aligned}
$$


```
    AL !ov!i# vi! amcm
    y 以!,
    &`'ゴ
```


$$
\begin{gathered}
\leftrightarrow \max A_{\max (N)}<\max A_{\max (M)} \\
\leftrightarrow A_{\max (N)}<A_{\max (\Omega)} \\
\leftrightarrow \max (N J)<\max (\Omega N) \\
\mapsto I<J
\end{gathered}
$$

which completes the proof of R_{7}.

3. Consistency

In this section we show the existence of a function η satisfying restrictions $R_{0}-R_{5}$ (and hence also R_{6} and R_{7}). To this end we consider the Von Neumann hierarchy of all sets.

$$
\begin{gathered}
V_{0}=\phi \\
V_{\alpha+1}=\left\{s \mid s \subseteq V_{\alpha}\right\} \text { for every ordinal } \alpha \\
V_{\beta}=\bigcup_{\gamma \in \beta} V_{\gamma} \text { for every limit ordinal } \beta .
\end{gathered}
$$

It is well known that we can consistently assume that for every set s there is an ordinal α such that $s \subseteq V_{\alpha}$; the minimum such ordinal is called the rank of s and is written rank s. We define a well ordering of all sets in the following way:

We first put $s<t$ whenever rank $s<$ rank t. To order sets having the same rank α we proceed by induction on α. Indeed there is only one set of rank zero, namely the empty set. Next assume we have ordered all sets of rank less than α and let s and t be two sets of rank α. If s and t are both infinite we put $s<t$, where $<$ is any well ordering of all infinite sets of rank α. If one is finite and the other is infinite then we make the finite set preceding the infinite set. Finally if they are both finite we order them antilexicographically (this makes sense, because by the induction hypothesis the elements of s and t have been already ordered). This completes the definition of a well ordering "<" of all sets. Now put

$$
\eta \phi=\phi \text { and } \eta s=\text { the least element of } s \text { with respect }<
$$

It is immediate to verify that restrictions R_{0}, R_{1} and R_{2} are satisfied. Moreover if $y \in x$ then $\operatorname{rank}(y)<\operatorname{rank}(x)$. This shows that R_{3} is also satisfied. Furthermore if $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \not{ }_{\neq} x$,

$$
\text { , } x \text { धुcost: bsif:t: , }
$$

$\operatorname{rank}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}=\operatorname{rank} x$ and x is finite then by the antilexicographic property $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $<x$. This yields R_{4}. Finally if rank $\left(x_{i}\right) \leq \operatorname{rank}\left(y_{0}\right), i=1, \ldots, n$, then rank $\left\{x_{0}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\} \leq \operatorname{rank}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$. This shows that R_{5} holds completing the proof of the existence of a function η satisfying all the conditions $R_{0}-R_{5}$.

4. Preliminaries on Multilevel Syllogistic

Multilevel Syllogistic (abbreviate MLS) is the unquantified theory whose language consists of
variables x, y, z, \ldots,
the operators $\cup, \bigcap, \backslash$,
the relators $€,=$.
In addition to these symbols we can use the usual propositional connectives $, \&, V \rightarrow \rightarrow \leftrightarrow$. Variables are supposed to range over arbitrary sets whereas the operators and relators are interpreted in the usual set-theoretical sense. An example of a formula in MLS is the following:

$$
x \in(y \bigcup z) \& x \notin y \rightarrow x \in z .
$$

This theory was shown to be decidable in [1]. The method described in [1] can be rephrased as follows. First we can limit ourselves, without loss of generality, to show how to test satisfiability of any finite conjunction Q of literals of the following type:

$$
\begin{gathered}
(=) x=y \bigcup z, x=y \backslash z \\
(\epsilon, \mathbb{Z}) x \in y, x \& y
\end{gathered}
$$

To describe how to accomplish this we need some definitions.

DEFINITION 4.1. A place α of Q is a $\phi /\{\phi\}$-valued function defined on the variables appearing in Q and which satisfies all literals of type (=) in Q.
$2-$.

$$
\begin{aligned}
& . \ddot{\square}
\end{aligned}
$$

$$
!: c .-1 /
$$

$$
\begin{aligned}
& \therefore \quad n_{8}, \ldots, \quad=? \text { ise }
\end{aligned}
$$

Notice that there are only finitely many places of Q.

DEFINITION 4.2. A place α at x of Q is a place of Q such that $\alpha(y)=\{\phi\}$ (resp. ϕ) whenever $x \in y($ resp. $x \notin y)$ appears in Q.

Let \sim be the equivalence relation defined by $x \sim y \leftrightarrow \alpha(x)=\alpha(y)$ for every place α of Q. Partition the variables of Q into equivalence classes, pick a representative \tilde{x} in each class. $\{y: y \sim x\}$ and replace each variable x in Q by its representative \bar{x}. Let \bar{Q} be the resulting conjunction and let $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the set of all variables of \bar{Q}.

DEFINITION 4.3. Let Γ be a set of places of \tilde{Q}. Then $x \sim{ }_{\Gamma} y$ will be an abbreviation for $(\forall \alpha \in \Gamma)(\alpha(x)=\alpha(y))$. The following states the decidability of MLS [1].

THEOREM 4.1 Q has a model if and only if there is a set $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ of pairwise distinct places of \bar{Q}, an ordering $<$ of $Y / \sim \Gamma$, and a function $F:\{1, \cdots, m\} \rightarrow\{1, \cdots, n\}$ such that:

$$
\begin{gather*}
\alpha_{F(i)} \text { is a place at } y_{i} \text { of } \bar{Q} \text { for every } i=1,2, \cdots, m \tag{4.1}\\
y_{i} \sim{ }_{\Gamma} y_{j} \rightarrow F(i)=F(j) \tag{4.2}\\
\alpha_{F(j)}\left(y_{i}\right)=\{\phi\}-\bar{y}_{i}>\bar{y}_{j} \tag{4.3}
\end{gather*}
$$

(where \bar{y} denotes the element of Y / \sim_{Γ} containing y).

If $\Gamma,<, F$ exist in such a way as to satisfy conditions (4.1) - (4.3) then models of Q can be built as follows. Choose sets $\sigma_{j .} j=1, \ldots, n$. Defining $M y_{h}$ before $M y_{k}$ whenever $\bar{y}_{h}<\bar{y}_{k}$ put:

$$
\begin{equation*}
M y_{i}=\bigcup_{\alpha_{j}\left(y_{j}\right)=\{\phi\}} \sigma_{j} \bigcup\left\{M y_{k}: \alpha_{F(k)}\left(y_{i}\right)=\{\phi\} \& 1 \leq k \leq m\right\} . \tag{4.4}
\end{equation*}
$$

Complete the definition of M by putting $M x=M \tilde{x}$ for any other variable of Q. Then we have the following basic fact [1]:

THEOREM 4.2. Formula (4.4) defines a model of Q whenever the following conditions are satisfied

$$
\begin{aligned}
& . \quad=-\pi=\pi 0^{2} b: 5 \mathbb{C N}^{\circ}, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { •晰 } 0 \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text {, U erf 乡一 i } \because \therefore .3 .
\end{aligned}
$$

$$
\begin{gather*}
\sigma_{i} \bigcap \sigma_{j}=\phi \text { whenever } i \neq j \tag{4.5}\\
M y_{i} \& \sigma_{j} \text { for every } i=1, \ldots, m \text { and } j=1, \ldots, n \tag{4.6}\\
\sigma_{j} \neq \phi \text { unless } j=F(k) \text { for some } k . \tag{4.7}
\end{gather*}
$$

5. Decidability of Finite Satisfiabiity for MLS Extended with a Choice Operator

We extend the language of MLS by adding a new unary operator η and show that the following completeness result holds for this extended theory which we call MLS η.

THEOREM 5.1: For every formula ψ of MLS η either ψ is true under all finite interpretations (i.e. interpretations in which the value of each term in ψ is a finite set) or its negation is satisfied by some finite interpretation independently of the particular choice of η satisfying restrictions $R_{0}-R_{5}$.

We prove this theorem by giving an algorithm which decides if $-\psi$ has or not finite models and in the positive case is able to construct a finite model of $-\psi$ which is independent of the particular interpretation of η. By the very same argument used in MLS we can restrict ourselves to consider a finite conjunction Q_{η} of literals of the following types:

$$
\begin{gathered}
(=) x=y \bigcup z, x=y \backslash z \\
(€, \notin) x \notin y, x \notin y \\
(\eta) x=\eta y
\end{gathered}
$$

Let Q be the set of statements of type $(=),(\epsilon, \mathbb{Z})$ in Q_{η} and let \bar{Q}_{η} be the result of replacing in Q_{η} each variable by its representative in the equivalence relation determined by all places of Q. Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the set of all the variables appearing in Q_{η}. Our main result is a consequence of the following decidability theorem.

THEOREM $5.2 Q_{\eta}$ has a finite model if and only if there exist a set of pairwise distinct places $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of \bar{Q} and a function $F:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that

$$
\begin{align*}
& \alpha_{F(i)} \text { is a place at } y_{i} \text { of } \bar{Q} \text { for every } i=1,2, \ldots, m . \tag{5.1}\\
& \alpha_{F(i)}\left(y_{k}\right) \neq \alpha_{F(j)}\left(y_{k}\right) \rightarrow \exists \alpha_{l} \in \Gamma \text { such that } \alpha_{l}\left(y_{i}\right) \neq \alpha_{\ell}\left(y_{j}\right) \tag{5.2}
\end{align*}
$$

$$
\begin{aligned}
& \because \because . \\
& \therefore \therefore \quad \ldots .1=\text {, } \\
& \therefore \text { : > ! } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { L3: .1.0.0. } \\
& \text { in in, } \because \text { : } \\
& \text { 1,11.:3* }
\end{aligned}
$$

Moreover, let $<$ be the ordering on Y / \sim_{Γ} defined as follows. Put

$$
\Delta_{i}=\left\{j: \alpha_{j}\left(y_{i}\right)=1\right\}
$$

and let $\bar{y}_{i}<\bar{y}_{j}$ whenever Δ_{i} precedes Δ_{j} in the antilexicographic ordering of finite sets of integers. Then the following properties must also hold

$$
\begin{align*}
& \alpha_{F(j)}\left(y_{i}\right)=\{\phi\} \rightarrow \bar{y}_{j}<\bar{y}_{i} \tag{5.3}\\
& \alpha_{j}\left(y_{i}\right)=\{\phi\} \rightarrow j<F(i) \tag{5.4}
\end{align*}
$$

$$
\begin{gather*}
\text { If } y_{j^{*}}=\eta y_{j} \text { appears in } \bar{Q}_{\eta} \text { then either } \alpha_{k}\left(y_{j}\right)=\phi \text { for all } k=1,2, \ldots, n \text { and } y_{j} \sim_{\Gamma} y_{j} \text { or } \tag{5.5}\\
\alpha_{F\left(j^{*}\right)}\left(y_{j}\right)=\{\phi\} \text { and } \\
\alpha_{F(k)}\left(y_{j}\right)=\{\phi\} \rightarrow\left(y_{j^{*}} \sim_{\Gamma} y_{k} V \bar{y}_{j^{*}}<\bar{y}_{k}\right) \tag{5.5.a}\\
\alpha_{i}\left(y_{j}\right)=\{\phi\} \rightarrow \forall \alpha_{\ell} \in \Gamma\left(\alpha_{\ell}\left(y_{j^{*}}\right)=\{\phi\} \rightarrow l<t\right) \tag{5.5.b}
\end{gather*}
$$

Furthermore if conditions (5.1) - (5.5) are all satisfied then a finite model of Q_{η}, independent of the particular choice of η, can be effectively constructed.

Proof. Assume that Q_{η} has a finite model M and let $M y_{i_{1}} \ldots, M y_{i_{k}}$ with $1 \leq i_{j} \leq m$ be pairwise distinct sets such that $\left\{M y_{i_{1}, \ldots, M}, \ldots y_{i_{k}}\right\}=\left\{M y_{1}, \ldots, M y_{m}\right\}$. Let $A_{1}, A_{2}, \ldots, A_{n}$ be the nonempty disjoint parts of the Venn diagram determined by $M y_{i_{1}}, \ldots, M y_{i_{k}}$. Assume $A_{1}<A_{2}<\cdots<A_{n}$ in the well ordering of sets associated with η. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the places of \bar{Q} defined by

$$
\alpha_{i}\left(y_{j}\right)=\{\phi\} \text { if and only if } A_{i} \subseteq M y_{j}
$$

Put $F(i)=k$ if and only if $M y_{i} \in A_{k}$. We claim that $\Gamma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and F satisfy conditions (5.1) - (5.5). Indeed conditions (5.1) and (5.2) are immediate. To verify the remaining conditions we will make use of the following

LEMMA 5.3.

$$
\begin{equation*}
y_{i} \sim{ }_{\Gamma} y_{j} \text { if and only if } M y_{i}=M y_{j} \tag{5.6}
\end{equation*}
$$

$\bar{y}_{i}<\bar{y}_{j}$ if and only if $M y_{i}<M y_{j}$ in the well ordering of all sets associated with η. (5.7)

$$
\begin{aligned}
& \text { le. のット } \because . E, 2 \because
\end{aligned}
$$

$$
\begin{aligned}
& y \quad: 11=1195^{2} \ldots
\end{aligned}
$$

$$
\ldots \text {. } \because \cdot 10: \cdots
$$

Proof. (5.6) is plain by the definition of the places α_{i}. Moreover condition (5.7) is an immediate consequence of R_{7} proven in Section 2.

To verify condition (5.3), assume that $\alpha_{F(J)}\left(y_{i}\right)=\{\phi\}$ then $M y_{j} \in M y_{i}$ and by R_{3} it follows $M y_{j}<M y_{i}$. Applying Lemma 5.3 we get $\bar{y}_{j}<\bar{y}_{i}$ which proves (5.3). Next we verify (5.4). Let $\alpha_{j}\left(y_{i}\right)=\{\phi\}$, then $A_{j} \subseteq M y_{i} \in A_{F(i)}$. By R_{4} and R_{3} we have $A_{j}<A_{F(i)}$ and hence $j<F(i)$ which completes the verification of (5.4). Finally to show that (5.5) also holds assume that $y_{j \bullet}=\eta y_{j}$ appears in \bar{Q}_{η}. Since M is a model of Q_{η} then $M y_{j \bullet}=\eta M y_{j}$. Thus if $M y_{j}=\phi$ then $M y_{j^{\bullet}}=\phi$ and by Lemma $5.3 y_{j \bullet} \sim_{\Gamma} y_{j}$. Otherwise if $M y_{j} \neq \phi$ then by $R_{1} M y_{j \bullet} \in M y_{j}$ and $\alpha_{F\left(j^{*}\right)}\left(y_{j}\right)=\{\phi\}$. Therefore if $\alpha_{F(k)}\left(y_{j}\right)=\{\phi\}$ for some k then $M y_{k} \in M y_{j}$. By R_{2} it follows that $M y_{j^{\bullet}} \leq M y_{k}$ and hence by Lemma 5.3 either $y_{j^{*}} \sim \Gamma_{y_{k}}$ or $\bar{y}_{j^{\bullet}}<\bar{y}_{k}$ showing (5.5.a). Moreover if $\alpha_{t}\left(y_{j}\right)=\{\phi\}$ then $\phi \neq A_{t} \subseteq M y_{j}$. If follows by R_{2} that $M y_{j}$ is less than or equal to each element of A_{t}. By applying R_{3} we have $M y_{j^{*}}<A_{t}$. Therefore if $\alpha_{\ell}\left(y_{j^{*}}\right)=\{\phi\}$ then $A_{\ell} \subseteq M y_{j^{*}}<A_{t}$ which by R_{4} gives $A_{\ell}<A_{t}$. This yields $l<t$ completing the proof of (5.5 b) and showing that Theorem 5.2 holds in one direction.

Conversely, assume that $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and F can be found in such a way as to satisfy all the conditions (5.1) - (5.5). We will show how to build a finite model of Q_{η} which is independent of the particular choice of η (subject only to the restrictions $R_{0}-R_{5}$).

Let I be a finite set of odd rank and put

$$
\begin{gathered}
I_{1}=l \\
I_{m}=\left\{\left\{I_{m-1}\right\}\right\} \text { for } m>1
\end{gathered}
$$

Notice that all these sets I_{m} have odd ranks r_{m} and $r_{1}<r_{2}<\cdots$ Moreover $I_{1}<I_{2}<\cdots$ in any well ordering of all sets satisfying restriction R_{3}.

Next put

$$
\begin{equation*}
\sigma_{j}=\left\{I_{j}\right\} \text { for every } j=1,2 \ldots, n \tag{5.8}
\end{equation*}
$$

Defining $M y_{i}$ before $M y_{j}$ whenever $\bar{y}_{i}<\bar{y}_{j}$ put:

$$
\because \because .
$$

"ne $\because \because \cdot \cdots$.
10 =

(1) c :
$\ddagger \quad \cdot n=?$
$i: \quad ;$

$$
\begin{equation*}
M y_{i}=\bigcup_{\alpha_{j}\left(y_{j}\right)=\{\phi\}} \sigma_{j} \bigcup\left\{M y_{k}: \alpha_{F(k)}\left(y_{i}\right)=\{\phi\}\right\} \tag{5.9}
\end{equation*}
$$

Extend the definition of M to every variable y of Q_{η} by putting $M y=M \bar{y}$. Since by hypothesis conditions (4.1), (4.2), and (4.3) of Theorem 4.1 are satisfied then we can try to apply Theorem 4.2. Since conditions (4.5) and (4.7) are trivially satisfied by (5.8) then it remains only to verify that (4.6) also holds. To this end we make use of the following

LEMMA 5.4

$$
\operatorname{rank}\left(M y_{i}\right)=\max \left\{\operatorname{rank}\left(\sigma_{j}\right): \alpha_{j}\left(y_{i}\right)=\{\phi\}\right\}
$$

Proof. We proceed by induction. If \bar{y}_{i} is minimum in Y / \sim_{Γ} with respect to the ordering defined in the statement of Theorem 5.2, then by (5.3) and (5.9)

$$
M y_{i}=\bigcup_{\alpha_{1}\left(y_{j}\right)=\{\phi\}} \sigma_{j}
$$

and the lemma is trivial.
Next assume that the lemma holds for every y_{j} less than y_{i}. Let

$$
p=\operatorname{rank}\left(\bigcup_{\alpha_{j}\left(y_{j}\right)=\{\phi\}} \sigma_{j}\right)=\max \left\{\operatorname{rank} \sigma_{j}: \alpha_{j}\left(y_{i}\right)=\{\phi\}\right\}
$$

and let

$$
q=\operatorname{rank}\left\{M y_{k}: \alpha_{F(k)}\left(y_{i}\right)=\{\phi\}\right\}=\max \left\{\operatorname{rank}\left(M y_{k}\right): \alpha_{F(k)}\left(y_{i}\right)=\{\phi\}\right\}+1
$$

We want to show that $p \geq q$. Indeed by the induction hypothesis and by (5.3) if $\alpha_{F(k)}\left(y_{i}\right)=\{\phi\}$, then rank $\left(M y_{k}\right)=\max \left\{\operatorname{rank}\left(\sigma_{j}\right): \alpha_{j}\left(y_{k}\right)=\{\phi\}\right\}$. But by (5.4) if $\alpha_{j}\left(y_{k}\right)=\{\phi\}$ then $j<F(k)$ and hence rank $\left(\sigma_{j}\right)<\operatorname{rank}\left(\sigma_{F(k)}\right)$. It follows that rank $\left(M y_{k}\right)<\operatorname{rank}\left(\sigma_{F(k)}\right)$ for every k such that $\alpha_{F(k)}\left(y_{i}\right)=\{\phi\}$. Therefore

$$
q-1<\max \left\{\operatorname{rank}\left(\sigma_{F(k)}\right): \alpha_{F(k)}\left(y_{i}\right)=\{\phi\}\right\} \leq p .
$$

This yields $q \leq p$ completing the proof of the lemma.
By this lemma it follows that each $M y_{i}$ has an even rank whereas each I_{j} has an odd rank. This implies $M y_{i} \& \sigma_{j}$, proving (4.6). Then we can apply Theorem 4.2 having that (5.9) defines a model M of all MLS statements in Q_{η}. In order to verify that M is indeed a model of Q_{η} no matter how η is chosen we proceed as follows. Assume that $y=\eta x$ appears

1 ．
$-\therefore=-k$

3まううの」！

$$
\therefore+\cdots=1
$$

in Q_{η} and let $y_{j^{*}}=\bar{y}$ and $y_{j}=\bar{x}$. Thus $y_{j^{*}}=\eta y_{j}$ appears in \bar{Q}_{η}. By (5.5) if $\alpha_{k}\left(y_{j}\right)=\phi$ for all k then $y_{j^{*}} \sim \Gamma_{j} y_{j}, M y_{j^{*}}=M y_{j}=\phi=M x=M y$ and $M y=\eta M x$. Otherwise $\alpha_{F\left(j^{*}\right)}\left(y_{j}\right)=\{\phi\}$ which yields $M y_{j^{*}} \in M y_{j}$. We will show that $M y_{j^{*}}$ is indeed the least element of $M y_{j}$ in any well ordering of all sets satisfying R_{3}, R_{4}, and R_{5}.

To this end we show the following lemma in which $<$ is the ordering of Y / \sim_{r} mentioned in Theorem 5.2.

LEMMA 5.5. If $\tilde{y}_{h}<\tilde{y}_{k}^{\prime}$ then $M y_{h}<{ }^{*} M y_{k}$ in any well ordering $<*$ of all sets satisfying R_{3}, R_{4} and R_{5}.

To prove this lemma we need to show that the following is also true.

LEMMA 5.6.

$$
M y_{h}<{ }^{*} I_{F(h)}
$$

in any well ordering $<^{*}$ of all sets satisfying R_{3}, R_{4}, and R_{5}

Proof: Again we proceed by induction. If \bar{y}_{h} is the least element of Y / \sim_{Γ} with respect to the ordering $<$ defined in the statement of Theorem 5.2 then $M y_{h}=\underset{\alpha_{1}\left(y_{h}\right)=\{\phi\}}{\bigcup} \sigma_{t}$ by (5.3) and (5.9). But by (5.4) if $\alpha_{t}\left(y_{h}\right)=\{\phi\}$ then $t<F(h)$ so that $I_{t} \leq I_{F(h)-1}<^{*}\left\{I_{F(h)-1}\right\}$ in any well ordering $<{ }^{*}$ of sets satisfying R_{3}, R_{4}, and R_{5}. By R_{5} we get

$$
M y_{h}=\left\{I_{t}: \alpha_{t}\left(y_{h}\right)=\{\phi\}\right\}<*\left\{\left\{I_{F(h)-1}\right\}\right\}=I_{F(h)}
$$

proving our lemma when \bar{y}_{h} is the least element of $Y / \sim \Gamma$.

Next assume that the lemma holds for every y_{k} with $\bar{y}_{k}<\bar{y}_{h}$. By (5.8) and (5.9) we have that $M y_{h}=\left\{I_{t}: \alpha_{l}\left(y_{h}\right)=\{\phi\}\right\} \bigcup\left\{M y_{k}: \alpha_{F(k)}\left(y_{h}\right)=\{\phi\}\right\}$. Now if $\alpha_{t}\left(y_{h}\right)=\{\phi\}$ then by (5.4) $t<F(h)$ and $I_{t} \leq I_{F(h)-1}<{ }^{*}\left\{I_{F(h)-1}\right\}$. Moreover if $\alpha_{F(k)}\left(y_{h}\right)=\{\phi\}$ then by the induction hypothesis $M y_{k}<{ }^{\prime} I_{F(k)}$ and by (5.4) $F(k)<F(h)$. Thus $M y_{k}<{ }^{*} I_{F(k)} \leq^{\prime \prime} I_{F(h)-1}<{ }^{*}\left\{I_{F(h)-1}\right\}$. We can then conclude that every element of $M y_{h}$ is less than $\left\{I_{F(h)-1}\right\}$ in any well ordering $<*$ of all sets

$$
W_{i} \dot{\beta}
$$

anj yod was glつis.

$$
x^{\circ}>i
$$

$\therefore=$
satisfying $R_{3}-R_{5}$. This implies that $M y_{h}<{ }^{*}\left\{\left\{I_{F(h)-1}\right\}\right\}=I_{F(h)}$ completing the proof of Lemma 5.6.

Now we are ready to prove Lemma 5.5. Indeed if $\bar{y}_{h}<\bar{y}_{k}$ then $\Delta_{h}<\Delta_{k}$ in the antilexicographic ordering of all sets of integers. Let $\Delta_{h}=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$ and $\Delta_{k}=\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ with $i_{1}<i_{2}<\cdots<i_{t}$ and $j_{1}<j_{2}<\cdots<j_{m}$. Since $\Delta_{h}<\Delta_{k}$ then there exists $j_{l} \in\left\{j_{1}, \ldots, j_{m}\right\}$ such that $\left\{j_{\ell+1}, \ldots, j_{m}\right\} \subseteq\left\{i_{1}, \ldots, i_{t}\right\}$ and $\left\{i_{1}, \ldots, i_{t}\right\} \backslash\left\{j_{1}, \cdots, j_{m}\right\}<\left\{j_{\ell}\right\}$. Thus

$$
\bigcup_{\substack{\left(,\left(y_{k}\right)=\{\phi\} \& \\ \alpha_{1}()_{k}\right)=\phi}} \sigma_{r}<* \sigma_{j_{k}}
$$

On the other hand if $\alpha_{F(q)}\left(y_{h}\right)=\{\phi\} \& \quad \alpha_{F(q)}\left(y_{k}\right)=\phi$ then $F(q)<j_{\ell}$ and by Lemma 5.6 $M y_{q}<{ }^{*} I_{F(q)}<{ }^{*} I_{j_{\ell}}$. Therefore we have that

$$
\bigcup_{\substack{\alpha_{r}\left(y_{j}\right)=\{\phi\} \& \\ \alpha_{r}\left(y_{h}\right)=\phi}} \sigma_{r} \bigcup\left\{M y_{q}: \alpha_{F(q)}\left(y_{h}\right)=\{\phi\} \& \alpha_{F(q)}\left(y_{k}\right)=\phi\right\}<{ }^{*} \sigma_{j_{l}}
$$

Using R_{6} and R_{4} we get

$$
\begin{gathered}
M y_{h}=\bigcup_{\alpha_{r}\left(y_{h}\right)=\{\phi\}} \sigma_{r} \bigcup\left\{M y_{q}: \alpha_{F(q)}\left(y_{h}\right)=\{\phi\}\right\}<* \sigma_{j_{e}} \cup \\
\left(\bigcup_{\substack{\alpha_{r}\left(y_{n}\right)=\{\phi\}<\\
\alpha_{r}\left(y_{k}\right)=\{\phi\}}} \sigma_{r} \bigcup\left\{M y_{q}: \alpha_{F(q)}\left(y_{h}\right)=\alpha_{F(q)}\left(y_{k}\right)=\{\phi\}\right\}\right) \leq * M y_{k}
\end{gathered}
$$

which completes the proof of Lemma 5.5.

Next we show that $M y_{j}$, is the least element of $M y_{j}$ in every well ordering $<^{*}$ of all sets satisfying $R_{3}-R_{5}$. Indeed we know that by (5.9)

$$
M y_{j}=\bigcup_{\alpha_{1}\left(y_{j}\right)=\{\phi\}} \sigma_{t} \bigcup\left\{M y_{k}: \alpha_{F(k)}\left(y_{j}\right)=\{\phi\}\right\}
$$

Now by (5.5.b) if

$$
\alpha_{1}\left(y_{j}\right)=\{\phi\}
$$

then

$$
\left(\forall \alpha_{\ell} \in \Gamma\right)\left(\alpha_{\ell}\left(y_{j}\right)=\{\phi\} \rightarrow \ell<t\right)
$$

This implies that if


```
ar \therefore1-.4d.
!\mp@code{!non.%こここと&゙:}0
    .vy 2`0l=-..
3i; & Losbr! © `
G.gTr ait. nib%. \because,
```

$$
\because
$$

$$
\alpha_{\ell}\left(y_{j}\right)=\{\phi\} \text { then } I_{\ell} \leq^{*} I_{t-1}<^{*}\left\{I_{t-1}\right\}
$$

for every t such that $\alpha_{1}\left(y_{i}\right)=\{\phi\}$. Consequently if $\alpha_{F(q)}\left(y_{j^{*}}\right)=\{\phi\}$ then by lemma 5.6 $M y_{q}<{ }^{\prime} I_{F(q)}<{ }^{*}\left\{I_{t-1}\right\}$ for every t such that $\alpha_{r}\left(y_{j}\right)=\{\phi\}$. Therefore every element of $M y_{j}$ 。 is less than $\left\{I_{t-1}\right\}$ for every t such that $\alpha_{t}\left(y_{j}\right)=\{\phi\}$. It follows by R_{5} that

$$
M y_{j^{*}}<^{*}\left\{\left\{I_{t-1}\right\}\right\}=I_{t}
$$

for every t such that $\alpha_{i}\left(y_{j}\right)=\{\phi\}$. To complete our proof it remains to show that $M y_{j^{*}}$ is less than or equal to every element $M y_{k}$, with $\alpha_{F(k)}\left(y_{j}\right)=\{\phi\}$, in every well ordering $<$ " satisfying $R_{3}-R_{5}$. Indeed if $\alpha_{F(k)}\left(y_{j}\right)=\{\phi\}$ then by (5.5.a) either $y_{j^{*}} \sim{ }_{\Gamma} y_{k}$ and $M y_{j^{*}}=M y_{k}$ or $\bar{y}_{j^{*}}<\bar{y}_{k}$ and by lemma $5.5 M y_{j *}<{ }^{*} M y_{k}$. We can then conclude that $M y_{j}$. is the least element of $M y_{j}$ in any well ordering $<^{\circ}$ of all sets satisfying R_{3}, R_{4}, and R_{5}. Therefore $M y_{j^{*}}=\eta_{\eta} M y_{j}$ and $M y=M \bar{y}=M y_{j^{*}}=\eta M y_{j}=\eta M \bar{x}=\eta M x$. We have thus shown that M is indeed a model of Q_{η} independent of the particular choice of η completing the proof of our main theorem.

6. A Validity Test for a Weaker Theory

In this section we consider the theory which results by dropping the symbols \cap, \cup, \backslash from the language considered in the preceding section. Moreover we assume that only restrictions $R_{0}-R_{3}$ must hold and that variables can range over arbitrary sets (not necessarily finite).

First we consider the case in which the η operator does not appear. So let Q be a conjunction of literals of type

$$
\begin{gathered}
(=, \neq) x=y, x \neq y \\
(\epsilon, \mathbb{\ell}) x \in y, x \& y
\end{gathered}
$$

where x, y are either variables or the constant ϕ.

We describe a satisfiability algorithm for Q originally given in [2]. Let \sim be the smallest equivalence relation on the set of all the variables of Q such that $x=y$ in Q implies $x \sim y$. Choose a representative \bar{x} in each equivalence class $\{y: y \sim x\}$, replace every variable by its

$$
\therefore \text { वllct पता } \because
$$

$$
\begin{aligned}
& \text { - } \because \therefore \therefore 1=\therefore=203 S
\end{aligned}
$$

$$
\begin{aligned}
& \text { (9) " glesin. : } \because=
\end{aligned}
$$

representative in Q and let \bar{Q} be the resulting formula. The following is part of [2].

THEOREM 6.1. Q has a model if and only if in \bar{Q} the following conditions are satisfied.
(6.1) There is no explicit contradiction of the form $x \neq x$ or $x \in y \& x \& y$.
(6.2) There is an ordering $y_{1}, y_{2}, \ldots, y_{m}$ of the variables of \bar{Q} such that $y_{1} \sim \phi$, and such that $y_{i} \in y_{j}$ in \bar{Q} implies $i<j$.

Let $\hat{x \in y}$ denote the fact that $x \in y$ is in \bar{Q}. If (6.1) and (6.2) are satisfied then models of Q can be built as follows. Choose sets $\sigma_{j}, j=1, \ldots, m$, such that $\sigma_{1}=\phi$. Next going upward in the ordering of variables, put

$$
\begin{equation*}
M y_{i}=\sigma_{i} \bigcup\left\{M y_{j}: \hat{y}_{j} \hat{\epsilon} y_{i}\right\} \tag{6.3}
\end{equation*}
$$

and complete the definition of M by putting $M x=M \bar{x}$ for every other variable x of Q. Then the following is true (see [2]).

THEOREM 6.2 Formula (6.3) defines a model M of Q whenever the following conditions hold

$$
\begin{gather*}
M y_{i} \& \alpha_{j} \text { for every } i, j=1, \ldots, m \tag{6.4}\\
M y_{i} \neq M y_{j} \text { unless } i=j \tag{6.5}
\end{gather*}
$$

Next let Q_{η} be a conjunction of literals of type

$$
(=, \neq) x=y, x \neq y
$$

$(\epsilon, \mathbb{Z}) x \in y, x \notin y$
$(\eta) y_{j^{*}}=\eta y_{j}$

Where x, y, y_{j}, y_{j} are either variables or the constant ϕ. We want to show that the following holds.

$$
\begin{aligned}
& \text { 1 }+\cdots \quad \cdot=11 \\
& \text {-2n :TM: en: 2. } \\
& \text { ・ッロッ: } 10
\end{aligned}
$$

$$
\cdots ; \quad \because \because
$$

THEOREM 6.3. Either Q_{η} is unsatisfiable or there is an effectively constructible assignment of sets to variables which makes Q_{η} true independently of the particular choice of η subject only to satisfy restrictions $R_{0}-R_{3}$

In order to prove this theorem we make use of the following set theoretic lemma.
LEMMA 6.4 For all sets $s_{0}, s_{1}, \cdots, s_{n+1}$ if

$$
s_{0}=s_{n+1} \text { and } \eta s_{j} \in s_{j+1}, j=0, \ldots, n \text {, then } \eta s_{0}=\eta s_{1}=\cdots=\eta s_{n}
$$

Proof. Indeed since $\eta s_{j} \in s_{j+1}$ then $\eta s_{j+1} \leqslant \eta s_{j}$ by R_{2}. This implies the lemma since $s_{0}=s_{n+1}$. To show that Theorem 6.3 holds, we first add to Q_{η} the following sentences.

$$
\begin{align*}
& \phi \in y_{j} \rightarrow y_{j *}=\phi \tag{6.6}\\
& y_{j^{*}} \in y_{j} \vee\left(y_{j}=\phi \& y_{j^{*}}=\phi\right) \tag{6.7}\\
& \left(y_{j_{0}}=y_{j_{n-1}} \& \underset{k=0}{\&} y_{j^{*}} \in y_{j_{k+1}}\right)-\stackrel{n+1}{\underset{k}{\boldsymbol{\&}} y_{j} y_{j_{k}}=y_{j^{*}} .} \tag{6.8}
\end{align*}
$$

where $\left\langle y_{j}, y_{j}\right\rangle$ and $\left\langle y_{j_{k}}, y_{j^{*}}\right\rangle$ range over all pairs of variables appearing in literals of type (η).

For our purpose is then sufficient to show that, for each disjunct q_{η} in the disjunctive normal form of Q_{η}, either q_{η} is unsatisfiable or it has a model independent of η. To do this, let q_{η} be one of these disjuncts and let q be the result of dropping literals of type (η) in q_{η}. We can assume that no pair of equivalent non-identical variable exist in q. To finish the proof of Theorem 6.3 it is sufficient to demonstrate the following

LEMMA 6.5. q_{η} has a model if and only if there is an ordering $z_{1}, z_{2}, \cdots, z_{m}$ of the variables of q_{η} such that

$$
\begin{gather*}
z_{1} \text { is (equivalent) } \phi ; \tag{6.9}\\
z_{u} \hat{\epsilon}_{z_{v} \rightarrow u<v} ; \tag{6.10}\\
\left(z_{u} \sim y_{j} \& z_{v} \sim y_{j^{*} \& z_{w}} \hat{\epsilon}_{z_{u}}\right) \rightarrow v \leq w \tag{6.11}
\end{gather*}
$$

for all variables z_{u}, z_{ν}, z_{w} and all y_{j}, y_{j} appearing in literals of type (η). Moreover in the positive

$\because \cdot n$.

rivib or ars 2ys

.1~211........

$$
\ldots 1 r:=: \geq
$$

case a model of q_{η} independent of the particular choice of η can be effectively constructed.

Proof. First assume that q_{η} has a model M. For every pair x, y of variables of q_{η} define $x<^{+} y$ to mean that either

$$
\begin{equation*}
M x<M y \text { in the well ordering of all sets associated with } \eta \tag{6.12}
\end{equation*}
$$

or

$$
\begin{equation*}
M x=M y, x, y \text { are distinct and for some } y_{j}, x \sim y_{j^{*}} \text { and } y \in \hat{y}_{j} \tag{6.13}
\end{equation*}
$$

Let us first prove that there are no cycles of $<^{+}$. That is there are no distinct variables $x_{n}, x_{n-1}, \ldots, x_{0}$ of q_{η} such that $x_{n}<^{+} x_{n-1}<^{+} \cdots<^{+} x_{0}$ where $n>0$ and x_{0} is the same as x_{n}. Indeed by (6.12) and (6.13) this could only happen if for $k=n, n-1, \cdots, 1 M x_{k}=M x_{k-1}$ and for some $y_{j_{k}}, x_{k} \sim y_{j^{*}}$ and $x_{k-1} \hat{\epsilon} y_{j_{k}}$. Therefore we would have

$$
x_{0} \hat{\in} y_{j_{1}}, x_{1} \sim y_{j^{*}{ }_{1}} \hat{\epsilon} y_{j_{2}}, \cdots, x_{n-1} \sim y_{j^{*}}{ }_{n-1} \hat{\epsilon} y_{j_{n}}
$$

and since x_{0} is x_{n} then $y_{j^{*}{ }_{n}} \sim x_{0}$. It readily follows from (6.8) that all the x_{i} must be the same, contradicting $x_{n}<^{+} x_{n-1}$. Therefore the transitive closure of $<^{+}$can be extended to a linear ordering $z_{1}, z_{2}, \cdots, z_{n}$ of the variables of q_{η}. Moreover if $M x \neq \phi$ then $\phi<M x$ in any well ordering of sets satisfying R_{3}. On the other hand if $M x=\phi$ and for some $y_{j}, x \sim y_{j^{*}}$ and $\phi \hat{\in} y_{j}$ then by (6.6) x is ϕ. This shows that z_{1} must be (equivalent to) ϕ, completing the proof of (6.9). As for (6.10) if $z_{u} \hat{\in} z_{v}$ then $M z_{u} \in M z_{v}, M z_{u}<M z_{v}$ and by (6.12) $u<v$. Finally if $z_{u} \sim y_{j}, z_{v} \sim y_{j^{*}}$ and $z_{w} \hat{\epsilon} z_{u}$ then $M z_{v}=\eta M z_{u}$ and $M z_{w} \in M z_{u}$. It follows that $M z_{v} \leq M z_{w^{*}}$. Now, if z_{v} and z_{w} are not distinct then $v=w$. On the other hand if z_{v}, z_{w} are distinct and $M z_{v}<M z_{w}$ then by (6.12) $v<w$. Finally if z_{v}, z_{w} are distinct and $M z_{v}=M z_{w}$ then by (6.13) again $v<u$. This concludes the verification of (6.11) completing the proof of Lemma 6.5 in one direction.

Conversely, assume that there exists an ordering $z_{1}, z_{2}, \cdots, z_{m}$ of the variables of q_{η}
$.14 . \quad$.
.:9. I .:.s: : \%it.

- IV IT jetion 5:

נ1 $1+!\cdot i$

lery (tis
f. 1°
satisfying conditions (6.9) - (6.11). Then a model of q_{η} independent of η can be constructed as follows. Put $M z_{1}=\sigma_{1}=\phi$ and going upward in the ordering of indices $i=2,3, \cdots, m$ put

$$
\begin{gather*}
\sigma_{i}=\left\{\left\{M z_{i-1}\right\}\right\} \tag{6.14}\\
M z_{i}=\sigma_{i} \bigcup\left\{M z_{j}: z_{j} \in z_{i}\right\} \tag{6.15}
\end{gather*}
$$

By an easy induction on i it can be proven that

$$
\begin{equation*}
\operatorname{rank}\left(M z_{i}\right)=2(i-1) \text { for each } i=1,2, \ldots, m \tag{6.16}
\end{equation*}
$$

This implies immediately that conditions (6.4) and (6.5) are satisfied. Therefore M is a model of q. To show that M is indeed a model of q_{η} let $z_{v}=\eta z_{u}$ be in q_{η}. Then for some j, $z_{v} \sim y_{j^{*}}$ and $z_{u} \sim y_{j}$. By (6.7) either $z_{v}=z_{u}=\phi$ and $M z_{v}=\phi=\eta \phi=\eta M z_{u}$, or $z_{v} \hat{\in} z_{u}$ and by (6.15) $M z_{v} \in M z_{u}$. In this last case we want to show that $M z_{v}$ is the least element of $M z_{u}$ in any well ordering " $<$ " of sets satisfying $R_{0}-R_{3}$. Indeed by (6.10) and (6.14) it follows that $M z_{v} \epsilon \cdots \in\left\{M z_{u-1}\right\}$ which by R_{3} yields $M z_{v}<\left\{M z_{u-1}\right\}$. Moreover if $M z_{w} \in M z_{u}$ with $z_{w} \hat{\in} z_{u}$ and z_{w} distinct from z_{v} then by (6.11) $u<w$. This by (6.14) and (6.15) gives $M z_{\nu} \in \cdots \in\left\{M z_{w-1}\right\} \in M z_{w}$ which implies $M z_{v}<M z_{u}$. We can then conclude that $M z_{v}$ is the least element of $M z_{u}$ and that M is indeed a model of q_{η}. Therefore Lemma 6.5 is proved implying that Theorem 6.3 also holds.

7. Optimizations of the Weaker Validity Test

To improve the efficiency of the decision algorithm we have described, in forming Q_{η} we avoid to include in it the formulas (6.6) - (6.8). As before q_{η} denotes a disjunct of the disjunctive normal form of Q_{η}. However, we modify q_{η} as follows. We non-deterministically "guess" for which literals $y_{j^{*}}=\eta y_{j} y_{j}$ will be nonempty in the model we are after. For each of these we add $y_{j^{*}} \in y_{j}$ to q_{η}; for the remaining literals $y_{k^{*}}=\eta y_{k}$ we add $y_{k}=\phi$ and $y_{k^{*}}=\phi$ to q_{η}. Define the relation \sim on the variables of q_{η} as the smallest equivalence relation such that

$$
\begin{aligned}
& \text { イ15ざー! コンざの9 }
\end{aligned}
$$

रilsijクーG af

$$
\begin{gather*}
x \sim y \text { whenever } x=y \text { is in } q_{\eta} \tag{7.1}\\
\phi \sim x \text { whenever } z \in w \text { is in } q_{\eta} \text { with } z \sim \phi, x \sim y_{j^{*}}, w \sim y_{j} . \tag{7.2}
\end{gather*}
$$

For every "cycle"

$$
\begin{gather*}
z_{0} \in x_{1}, z_{1} \in x_{2}, \ldots, z_{n-1} \in x_{n}, z_{n} \in x_{0} \text { in } q_{\eta} \text { with } n>0 \\
\text { and } x_{k} \sim y_{j^{*} k}, z_{k} \sim y_{j_{k}} \text { for } k=0,1, \ldots, n, \text { one must have } z_{0} \sim z_{1} \sim \cdots z_{m} \tag{7.3}
\end{gather*}
$$

The remaining steps of the validity test are the same as in the preceding algorithm. More precisely the existence of an ordering $z_{1}, z_{2}, \cdots, z_{m}$ of the variables of q_{η} satisfying (6.9) (6.11) is tested. Finally Lemma 6.5 can be proved in analogy with the preceding proof.

8. Acknowledgments

The authors would like to thank Jacob T. Schwartz for suggesting the problem addressed in the present paper, and R. Parikh for helpful discussions and comments. The authors acknowledge partial support by the C.N.R. of Italy. This work was partially supported by NSF Grant \# DCR-84-01633.

9. References

[1] Ferro, A., Omodeo, E.G., and Schwartz, J.T., "Decision Procedures for Elementary Sublanguages of Set Theory.I. Multi-level Syllogistic and Some Extensions", Comm. Pure Appl. Math. 33 , 533-608 (1980)
[2] Breban, M., Ferro, A., Omodeo, E.G., and Schwartz, J.T., "Decision Procedures for Elementary Sublanguages of Set Theory. II. Formulas Involving Restricted Quantifiers, Together with Ordinal, Integer, Map and Domain Notions", Comm. Pure. Appl. Math. 34, pp.177-185 (1981).
[3] Breban, M., and Ferro, A., Decision procedures for elementary sublanguages of set theory. III. Restricted classes of formulas involving the powerset operator and the general set union

operator. Advances in Appl. Math., 5, (1984).
[4] Cantone, D., Ferro, A., Micale, B., and Sorace, G., Decision procedures for elementary sublanguages of set theory. IV. Formulae involving a rank operator and formulae involving one ocurence of the set operator $\sum(x)=\{\{y\} \mid y \in x\}$, to appear in Comm. Pure Appl. Math.
[5] Cantone, D., Ferro, A., and Schwartz. J.T., Decision procedures for elementary sublanguages of set theory. V. Multilevel syllogistic exterded by the general union operator. Journ. Comp. Syst. Sci., to appear.
[6] Ferro, A., A note on the decidability of MLS extended by the powerset operator. Comm. Pure Appl. Math. 38, 1985, pp.367-374.
[7] Cantone, D., Ferro, A., and Schwartz, J.T., Decision procedures for elementary sublanguages of set theory. VI. Multilevel syllogistic extended by the powerset operator, Comm. Pure Appl. Math. 38, 1985, pp.549-571.
[8] Leisenring, A.C., "Mathematical Logic and Hilbert's $\in-$ Symbol", MacDonald \& Co. (1969)
[9] Jech, T., "The Axiom of Choice" North Holland (1973)
[10] Jech, T., "Set Theory" Academic Press (1978)
[11] Bledsoe, W.W., A Maximal Method for Set Variables in Automatic Theorem Proving, Tech. Rept. ATP 33A, Automatic Theorem Proving Project, University of Texas, Austin, Texas.

NYU COMPSCI TR-226 C.I
Ferro, Alfredo
Decision procedures for elementary sublanguages of set theory. VII

```
        NYU COMPSCI TR-226
C. 1
```

Ferro, Alfredo
Decision procedures for
elementary sublanguages of f set theory. VII

LIBRARY
N.Y.U. Courant Institute of Mathematical Sciences

A fine will be charged for each day the book is kept overtime.

